


D ATA B A S E D E S I G N
B O O K

learn how to get from business requirements
to a database schema

alexey makhotkin

2025



© 2025 Alexey Makhotkin
All rights reserved.

No part of this eBook may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means—electronic,
mechanical, photocopying, recording, or otherwise—without the
prior written permission of the copyright owner, except for the
use of brief quotations in book reviews or scholarly articles.

First Edition (revision: 2025-04-14)
This eBook is licensed for your personal use only.
Unauthorized distribution is prohibited.

Cover design by Anna Golde
(https://www.linkedin.com/in/annagolde/).

Database Design Book: https://databasedesignbook.com/

Minimal Modeling Substack: https://minimalmodeling.substack.com/

Twitter: https://twitter.com/alexeymakhotkin

https://www.linkedin.com/in/annagolde/
https://databasedesignbook.com/
https://minimalmodeling.substack.com/
https://twitter.com/alexeymakhotkin


C O N T E N T S

1 Introduction 7

1.1 Who is this book for? 7

1.2 What level of understanding is this book aimed
at? 7

1.3 What you would get from reading this book 8

1.4 Who I am 9

2 Building a logical model 10

2.1 System requirements as input 10

2.2 Who do we write the logical model for? 11

2.2.1 For yourself 11

2.2.2 For software developers 12

2.2.3 For the project group 12

2.3 Can I skip the logical model? 13

2.4 Can I use an ERD (entity-relationship diagram)
instead? 13

2.5 Elements of a logical model 14

2.6 The process 14

2.7 Anchors: introduction 15

2.7.1 Example: posts 15

2.7.2 A list of anchors 16

2.7.3 Example: invoices 17

2.7.4 Anchor IDs 18

2.8 Attributes: introduction 19

2.8.1 Attributes: definition 19

2.8.2 Attributes and anchors 21

2.8.3 Human-readable questions 21

2.8.4 Example values 22

2.8.5 Data types and types of data 22

2.8.6 What is not an attribute? 23

2.8.7 How to confirm that all the attributes have
been listed? 23

2.9 Links: introduction 24

2.9.1 Links: definition 25

2.9.2 Links: pair of anchors 26

3



contents 4

2.9.3 Links: cardinality 26

2.9.4 Cardinality is a business concern 27

2.9.5 Links: sentences 28

2.9.6 False links and unique pairs of IDs 29

2.10 More on anchors 31

2.10.1 Unique attributes 31

2.10.2 Optional unique attributes 32

2.10.3 External IDs 33

2.10.4 External ID enumeration 34

2.10.5 Several unique IDs 34

2.10.6 Implementing physical IDs 35

2.11 Handling time in the logical model 36

3 “Hello world” use case: podcast catalog 41

3.1 Business requirements 41

3.2 Anchors 43

3.3 Attributes 43

3.4 Links 47

3.5 Cross-checking the requirements 50

3.6 A diagram 51

3.7 Are we there yet? 51

3.8 Evolving the system 52

4 Building a physical schema 53

4.1 Many table design strategies are possible 53

5 Table-per-anchor table design strategy 55

5.1 Action plan 55

5.2 Anchors: choosing table names 56

5.3 Attributes: choosing column names 57

5.4 Attributes: choose column data types 59

5.4.1 Recommended physical types for SQL databases:
summary 61

5.4.2 Strings 62

5.4.3 Integer numbers 62

5.4.4 Monetary amounts 63

5.4.5 Numeric values 63

5.4.6 Yes/no values 64

5.4.7 Either/or/or values 64

5.4.8 Dates 65

5.4.9 Date with time in UTC timezone 65

5.4.10 Date with time in a specific timezone 65



contents 5

5.4.11 Timezone names 65

5.4.12 Binary blobs 66

5.5 Links 66

5.5.1 One-to-many (1:M) links 66

5.5.2 Many-to-many (M:N) links 68

5.6 Podcast catalog: a complete physical schema 70

5.6.1 CREATE TABLE statements 73

5.6.2 Audio file and cover images 74

5.7 Physical ID design 75

5.7.1 Case study: a tiny CMS 75

5.7.2 The maximum number of items 77

5.7.3 Reaching the maximum number of items 77

5.7.4 Space taken by IDs 78

5.7.5 Disk space is time 79

5.7.6 Storage density 79

5.7.7 UUIDs as anchor IDs 80

5.7.8 Countries, currencies, languages: well-known
anchors 81

5.7.9 Countries, currencies, and languages in
your business 82

5.8 Handling time in the physical model 83

6 Other table design strategies 86

6.1 Table design concerns 86

6.2 What is the recommended table strategy? 87

6.3 Table-per-anchor, revisited 88

6.4 Side tables 89

6.4.1 Naming and composition of side tables 90

6.4.2 A stopgap table 91

6.5 JSON columns 92

7 Secondary data 94

7.1 Cached column example 95

7.2 There is no free lunch 96

7.3 Cached column is not an attribute 97

7.4 Discovering secondary data 97

8 Evolving your database 99

8.1 Elementary database migrations 100

8.2 Table rewrite 101

8.3 Adding an attribute 104

8.3.1 Step 1: Update logical model 105



contents 6

8.3.2 Step 2. Run database migration 106

8.3.3 Step 3. Update code 106

8.4 Dealing with table rewrite 107

9 Movie tickets: repeated sales pattern 109

9.1 Business requirements 109

9.2 Per-department modeling 110

9.3 Movies department 112

9.4 Maintenance department 112

9.5 Movie schedule department 114

9.6 Tickets department 116

9.7 A diagram 119

9.8 Conclusion 119

10 Books and washing machines: polymorphic data pat-
tern 120

10.1 Business requirements 120

10.2 Per-department modeling 121

10.3 Key insight: generic anchor vs specific anchors 121

10.4 Multiplexing on item type 123

10.5 Tangled links 124

10.6 A diagram 125

10.7 Table-per-anchor approach 126

10.8 Polymorphic table design strategy 127

10.8.1 JSON-based columns 127

10.8.2 Physical schema 127

10.8.3 Storing links in JSON 128

10.8.4 Table design concerns, revisited 129

10.8.5 Documenting physical storage 129

11 Practicalities 133

11.0.1 Document-based catalog 133

11.0.2 Spreadsheet-based catalog 133

11.0.3 How much to write 135

11.0.4 Lightweight designs 137



1
I N T R O D U C T I O N

This is a book on database design. You can find book updates
and extra material at https://databasedesignbook.com/.

1.1 who is this book for?

The goal of this book is to help you get from a vague idea of
what you need to implement (e.g., “I need to build a website to
manage schedule and instructor appointments for our gym”) to the
comprehensive definition of database tables.

If you’re a beginner, this book is for you. If you know that
you need a database for your project, but are not sure how to
begin, this is for you, too. If you’ve learned something about
database design theory, but not sure if your design would work:
you’ll find help here. And if you struggle with some parts of the
business domain, while the rest is clear, the approach laid out in
this book will give clarity.

1.2 what level of understanding is this book aimed

at?

The first part of the book is completely database-agnostic. All you
need to understand is how your business works. This does not
have to be a business, either: just some problem that necessitates
a database.

The second part of the book requires some level of familiar-
ity with common databases: how the tables are created, what
physical data types exist, what are primary key and index, how
the tables would be queried, and how to insert and update data.

7

https://databasedesignbook.com/


1.3 what you would get from reading this book 8

We begin by assuming that you will use one of the traditional
relational database servers, such as MySQL or PostgreSQL.

You do not need to understand database theory, such as normal
forms.

1.3 what you would get from reading this book

The idea of the book is to make every step of table design action-
able.

You will learn how to extract the logical model from a free-
form description of the problem. This will also help to clarify
your understanding of the problem, because the process forces
you to be more precise and reduces hand waving.

You will learn how the logical model is translated into a phys-
ical table design. There are a dozen possible ways to represent
logical models in physical space. First we discuss one such de-
sign strategy (a table per anchor); later we’ll see why one might
want to occasionally use a different one .

The book will help you answer a common question: how can I
prove, even to myself, that my design is complete? Also, you
will be able to defend this design, be it at a job interview or in a
database exam.

A logical model is a very good way to explain your design
to other people, for example to your team members or business
stakeholders. This way of presenting your design immediately
answers many questions that people may have. Because of that
they can give better feedback and confirm that you’re on the
same page.

You will learn to think separately about logical and physical
aspects of your database. This brings a lot of clarity: your
problem lies either on the one or the other side, and you can save
a lot of complexity if the other side is fixed.

Our approach is strongly rooted in relational modeling. How-
ever, it is designed to accommodate non-relational NoSQL sys-
tems, and even more specialized technologies such as Amazon
S3. As mentioned earlier, the logical model is not dependent on
any specific database server system: you just have to choose a
suitable table design strategy.



1.4 who i am 9

1.4 who i am

My name is Alexey Makhotkin. I have been working with
databases for more than 25 years in various roles: as a software
engineer, database administrator, team lead, head of software
engineering. I’ve built and helped to build dozens of schemas
over the years.

In 2021 I started the “Minimal Modeling” substack:
https://minimalmodeling.substack.com/, trying to summarize
what I have learned. This book is another step. You can contact
me at squadette@gmail.com.

https://minimalmodeling.substack.com/
mailto:squadette@gmail.com


2
B U I L D I N G A L O G I C A L M O D E L

Suppose that you want to build a software system that stores
some data in a database. It may be one of hundreds possible
kinds of software systems, such as:

• ecommerce: placing and fulfilling orders;
• money-tracking software, such as personal budget tracker

or a business accounting system;
• social network with users, posts, and comments;
• tracking your progress and achievements in a role-playing

game;
• etc., etc.

In each of those systems there is some sort of underlying
database, with tables, columns, rows and datatypes. Your task is
to design and build this database. Then the system will use it to
store and retrieve the data.

How do you design and build this database? This chapter, as
well as the entire book, aims to answer exactly this question.

2.1 system requirements as input

What exactly are we building? In this book, it is your responsi-
bility to specify the system that you are building. You need to
gather and provide answers about what the system is supposed
to do.

The point of this chapter is that your understanding of the
requirements will gradually evolve.

In the beginning you have just an informal text that roughly
specifies what the system does. Imagine that you sit down with
somebody and explain what the system is supposed to do. They

10



3

“ H E L L O W O R L D ” U S E C A S E : P O D C A S T
C ATA L O G

Let’s design our first toy but realistic use case: a catalog of
podcasts.

We’re going to design an MVP: a minimum viable product.
More complex use cases would be found later in the book.

We discuss how to extend this scope with more interesting
features (e.g., categories) later in this section.

We’re only going to build a logical model here. In the second
part of the book we’ll cover the physical design directly based
on this model.

3.1 business requirements

Let’s use a screenshot of an episode from Apple Podcast and see
what information we have here (see the next page).

Here is a list of elements that we can see here:

• cover image;
• air date (16 January 2025);
• episode number (26);
• length (1 hr 3 min);
• episode title (“Debanking explained”);
• name of the show (“Complex Systems with Patrick McKen-

zie”);
• episode description (“In this episode, . . . ”).

If you scroll down, there will be a bit more information, but
let’s begin with this. Oh wait, the actual audio file should prob-

41



4

B U I L D I N G A P H Y S I C A L S C H E M A

So, now that we have a catalog of anchors, attributes and links,
we can build a physical schema: the actual database tables. When
you have a catalog, 75% of work is done. Constructing database
tables is pretty straightforward at that point.

4.1 many table design strategies are possible

Imagine that you want to build a relatively simple, but non-trivial
application, for example, a to-do list. You can write down a set of
functional requirements for the app and you can define a logical
model (exactly as described in the previous chapters). You do all
that without any actual software development first.

The next step is to design the physical table schema. But let’s
do a thought experiment: suppose that we hire a dozen teams of
software developers, give them the requirements document, and
ask them to implement it as they see fit.

They are free to choose their favorite database server and to
design tables any way they like. The only restriction is that the
requirements must be implemented fully, without changes, or
additional features, and so on.

There would most probably be twelve different physical schemas.
Some of them may look very similar to each other, but a couple
would probably look really exotic.

Physical schemas would be different because different teams
would use different table design strategies. A table design
strategy is a set of rules that prescribes how to store anchors,
how to store attributes, and how to store links.

53



5

TA B L E - P E R - A N C H O R TA B L E D E S I G N
S T R AT E G Y

Table-per-anchor strategy is probably the most straightforward
way of building tables:

• one table per anchor;
• one table per many-to-many links;
• each attribute is a column in its anchor’s table;
• each only-one-to-many link is a column of a table for the

“many” anchor.

This approach corresponds to the third and fourth normal
forms as defined in the relational theory. It is roughly what
they would teach you in the beginner level university courses on
database design.

The resulting tables are clean, understandable, logical and
error-proof. From the physical point of view, this design is
neutral, it is not optimized for any specific access pattern, except
for understandability.

5.1 action plan

Creating tables from the logical model is straightforward. Here
are the next actions:

Step 1. Insert table names in the list of anchors;
Step 2. For each attribute, add the column name and choose the

data type;
Step 3. For each many-to-many link, choose the name of the table;
Step 4. For each only-one-to-many link, choose the name of the

column;

55



6
O T H E R TA B L E D E S I G N S T R AT E G I E S

6.1 table design concerns

There are four main concerns that underlie every table design
strategy.

First, the result tables must be able to store all the data defined
in the logical schema. This requirement may sound trivial,
but sometimes people cut corners or get confused. As a result,
database schema may just be incomplete. One way to make an
incomplete database schema is to skip defining a logical schema.

Second, you need to understand the effort needed to add a
new attribute, link or anchor to the database. Note that here
we only talk about adding a new element, and not about other
ways of database evolution (changing, deleting, etc.). Adding a
new element is probably the most common operation, and it is
expected to be roughly the easiest.

Third, we need to consider how the database would handle
the commonly expected read-only queries, performance-wise.
Queries could be classified in three groups:

• Naturally performant. For example, retrieving some at-
tributes by a set of IDs is virtually always the cheapest
possible operation, because it is naturally optimized in
almost all databases.

• Easily optimizable. For example, if you need to query by
a value of some attribute, you can easily add an index on
the corresponding table column.

• Specifically optimized. Some queries are so important
for the system performance that you need to optimize the
database specifically for them. You need to be careful with

86



7

S E C O N D A RY D ATA

Anchors, links and attributes together are considered primary
data. In other words, they are the source of truth.

For example, when we store the information about an or-
der made by a customer, it is stored in anchor tables, attribute
columns and link tables. If we lose this information, for example
a table row is accidentally deleted, the system would think that
this is how it is. If we delete one item from the order, we’ll send
a package without this item. If we delete information about the
order, the system won’t recognize the order number. This is
primary data. If it gets deleted accidentally, you need to restore
from backups.

There is another sort of data: secondary data. This is the data
that was copied from the primary data, duplicated, reorganized,
flattened, post-processed and so on. There are many ways to
introduce and use the secondary data. If it gets deleted acciden-
tally, it can be recalculated from the primary data (theoretically,
at least).

Here is an incomplete list of things that we consider secondary
data:

• cached (pre-computed) columns;
• pre-aggregated tables;
• denormalized columns and tables;
• ML models generated and updated based on data;
• materialized feeds;
• flat tables;
• full-text indexes;
• copies of data in different databases;
• data caches such as Memcached or in-memory Redis;

94



8
E V O LV I N G Y O U R D ATA B A S E

Inevitably, sooner or later in your project’s lifecycle, you will
have to change the structure of your database.

There are several practical reasons for the database to evolve:

• normal development of new features;
• changing the definition of existing database elements: an-

chors, attributes and links. This happens when the busi-
ness requirements change in such a way that the original
implementation is incompatible with them.

• improving database performance or scalability by reorga-
nizing physical schema;

• introducing secondary representations, such as derived
columns and pre-aggregated tables;

• improving organizational scalability: for example, mak-
ing it easier to add new attributes by introducing a JSON
column;

• removing data that is no longer needed, or no longer
wanted;

• migrating to a different database for performance reasons,
compliance reasons or for organizational scalability;

• building data warehouses: derived representations of pri-
mary data for better reporting, data analytics and so on.

Any database evolution requires changing three things:

• logical schema;
• application code;
• physical database itself.

99



9

M O V I E T I C K E T S : R E P E AT E D S A L E S PAT T E R N

Let’s discuss how to model selling movie tickets. This use case il-
lustrates a very common pattern that I call repeated sales pattern.
We will only focus on the logical model. We’re only going to talk
about essential parts of this pattern, omitting some details.

“Repeated sales” pattern is obviously important to model
many businesses: not only movie tickets, but also flight and
train tickets, hotel reservations, cargo transportation and other
examples. Outside of sales, this pattern arises in a well-known
textbook case of “course assignments” that is often used in teach-
ing database modeling.

9.1 business requirements

Suppose that our business is a movie theater, with multiple
screens. Inside every auditorium there are a number of seats,
physical chairs. We want to sell tickets to people willing to
occupy those chairs for a few hours at certain times of a specific
day.

Our movie theater also buys rights to show various movies, as
they are released.

Every day there are multiple showtimes at each auditorium.
Anyone can buy a ticket for a certain time of the day at a certain
date, when a certain movie will be shown.

For simplicity, we assume that every movie ticket costs exactly
the same, no matter what time slot, movie, or a screen. It’s not
hard to add this improvement on top of the basic logical model
we’ll build.

Moreover, we won’t even bother with payments. Generally
speaking, there are several ways how you can get a ticket:

109



10
B O O K S A N D WA S H I N G M A C H I N E S :
P O LY M O R P H I C D ATA PAT T E R N

10.1 business requirements

Imagine an e-commerce website that sells a lot of different things.
For example, books and washing machines, but also clothes,
bicycles, LED lamps, vinyl records, groceries, gift cards, etc., etc.

For each type of item we want to help users find the best
item that we offer. For example, people shopping for a washing
machine may want to search by the vendor name, capacity, phys-
ical dimensions, and for some unique features that the washing
machine industry has invented.

People buying books want to search by the author name, cover
type, publication date, etc. This is an entirely different set of
properties. (Note that we do not say “different set of attributes”,
because author information requires links too. This is something
that is often omitted in discussions of this pattern.)

Same for the bicycles, groceries and so on.
But there are some things that are common between books,

washing machines and so on: they can all be ordered and they
have a price. You can place a single order for two items: a book
and a washing machine, and this order will be delivered to you,
maybe in two shipments.

Let’s apply our approach to this sort of business and see how
it works. Here, in addition to the logical model, we will also
extensively discuss the physical table design.

120



11
P R A C T I C A L I T I E S

You can experiment with the approach presented in this book
using any tool that you’re familiar with. You need to maintain
three tables: list of anchors, list of attributes and list of links.
Also, you need a place to keep a textual description of your
project.

You also need to maintain the physical database schema some-
where. It depends on the way you develop your system. It may
be an SQL file in your source repository, or an ORM definition,
or maybe you directly design the tables in your database using
some sort of UI, graphical or text-based. It’s possible that you’re
only interested in the logical schema so you skip this part.

11.0.1 Document-based catalog

It seems that the most natural choice here is some word processor,
such as Google Docs (that’s what I use). Tables in this book are
formatted for readability, due to demands of e-book readers. For
the actual table design process you need something simple.

On the following page you can see some example Google Docs
screenshots (before typesetting).

11.0.2 Spreadsheet-based catalog

Another type of tool that you could use is a spreadsheet, for
example Google Sheets.

Create three tabs: anchors, attributes and links. Input the
column names, and make the header “frozen”, so that it stays on
the screen when you scroll the rest of the document. Enable text
wrapping on all the columns, and set text alignment to top.

133


	Introduction
	Who is this book for?
	What level of understanding is this book aimed at?
	What you would get from reading this book
	Who I am

	Building a logical model
	System requirements as input
	Who do we write the logical model for?
	For yourself
	For software developers
	For the project group

	Can I skip the logical model?
	Can I use an ERD (entity-relationship diagram) instead?
	Elements of a logical model
	The process
	Anchors: introduction
	Example: posts
	A list of anchors
	Example: invoices
	Anchor IDs

	Attributes: introduction
	Attributes: definition
	Attributes and anchors
	Human-readable questions
	Example values
	Data types and types of data
	What is not an attribute?
	How to confirm that all the attributes have been listed?

	Links: introduction
	Links: definition
	Links: pair of anchors
	Links: cardinality
	Cardinality is a business concern
	Links: sentences
	False links and unique pairs of IDs

	More on anchors
	Unique attributes
	Optional unique attributes
	External IDs
	External ID enumeration
	Several unique IDs
	Implementing physical IDs

	Handling time in the logical model

	``Hello world'' use case: podcast catalog
	Business requirements
	Anchors
	Attributes
	Links
	Cross-checking the requirements
	A diagram
	Are we there yet?
	Evolving the system

	Building a physical schema
	Many table design strategies are possible

	Table-per-anchor table design strategy
	Action plan
	Anchors: choosing table names
	Attributes: choosing column names
	Attributes: choose column data types
	Recommended physical types for SQL databases: summary
	Strings
	Integer numbers
	Monetary amounts
	Numeric values
	Yes/no values
	Either/or/or values
	Dates
	Date with time in UTC timezone
	Date with time in a specific timezone
	Timezone names
	Binary blobs

	Links
	One-to-many (1:M) links
	Many-to-many (M:N) links

	Podcast catalog: a complete physical schema
	CREATE TABLE statements
	Audio file and cover images

	Physical ID design
	Case study: a tiny CMS
	The maximum number of items
	Reaching the maximum number of items
	Space taken by IDs
	Disk space is time
	Storage density
	UUIDs as anchor IDs
	Countries, currencies, languages: well-known anchors
	Countries, currencies, and languages in your business

	Handling time in the physical model

	Other table design strategies
	Table design concerns
	What is the recommended table strategy?
	Table-per-anchor, revisited
	Side tables
	Naming and composition of side tables
	A stopgap table

	JSON columns

	Secondary data
	Cached column example
	There is no free lunch
	Cached column is not an attribute
	Discovering secondary data

	Evolving your database
	Elementary database migrations
	Table rewrite
	Adding an attribute
	Step 1: Update logical model
	Step 2. Run database migration
	Step 3. Update code

	Dealing with table rewrite

	Movie tickets: repeated sales pattern
	Business requirements
	Per-department modeling
	Movies department
	Maintenance department
	Movie schedule department
	Tickets department
	A diagram
	Conclusion

	Books and washing machines: polymorphic data pattern
	Business requirements
	Per-department modeling
	Key insight: generic anchor vs specific anchors
	Multiplexing on item type
	Tangled links
	A diagram
	Table-per-anchor approach
	Polymorphic table design strategy
	JSON-based columns
	Physical schema
	Storing links in JSON
	Table design concerns, revisited
	Documenting physical storage


	Practicalities
	Document-based catalog
	Spreadsheet-based catalog
	How much to write
	Lightweight designs


